Коллекторные машины

Реферат

Введение

Электрические машины постоянного тока используются как в качестве генераторов, так и в качестве двигателей. Наибольшее применение имеют двигатели постоянного тока, области применения и диапазон мощности которых достаточно широки: от долей ватт (для привода устройств автоматики) до нескольких тысяч киловатт (для привода прокатных станов, шахтных подъемников и других механизмов).

Двигатели постоянного тока широко используются для привода подъемных средств в качестве крановых двигателей и привода транспортных средств в качестве тяговых двигателей. Основные преимущества двигателей постоянного тока по сравнению с бесколлекторными двигателями переменного тока — хорошие пусковые и регулировочные свойства, возможность получения частоты вращения более 3000 об/мин, а недостатки — относительно высокая стоимость, некоторая сложность в изготовлении и пониженная надежность. Все эти недостатки машин постоянного тока обусловлены наличием в них щеточно-коллекторного узла, который к тому же является источником радиопомех и пожароопасности. Эти недостатки ограничиваю! применение машин постоянного тока.

В данном разделе рассмотрены машины постоянного тока общего назначения, получившие наибольшее применение в современном электроприводе. Рассмотрены также некоторые виды машин постоянного тока специального назначения, главным образом применяемые в устройствах автоматики. В заключение следует отметить, что наибольшее практическое применение получили машины постоянного тока в качестве электродвигателей. Объясняется это возрастающим применением в качестве источников постоянного тока полупроводниковых выпрямительных устройств, имеющих более высокие технико-экономические показатели по сравнению с коллекторными генераторами постоянного тока.

1. Принцип действия генератора и двигателя постоянного тока

Характерным признаком коллекторных машин является наличие у них коллектора — механического преобразователя переменного тока в постоянный и наоборот. Необходимость в таком преобразователе объясняется тем, что в обмотке якоря коллекторной машины должен протекать переменный ток, так как только в этом случае в машине происходит непрерывный процесс электромеханического преобразования энергии.

Рассмотрим принцип действия коллекторного генератора постоянного тока. На рис. 1 изображена упрощенная модель такого генератора: между полюсами N и S постоянного магнита находится вращающаяся часть генератора — якорь, вал которого посредством шкива и ременной передачи механически связан с приводным двигателем (на рисунке не показан) — источником механической энергии. В двух продольных пазах на сердечнике якоря расположена обмотка в виде одного витка a,b,c,d, концы которого присоединены к двум медным изолированным друг от друга полукольцам, образующим простейший коллектор. На поверхность коллектора наложены щетки А и В, осуществляющие скользящий контакт с коллектором и связывающие генератор с внешней цепью, куда включена нагрузка сопротивлением R.

4 стр., 1602 слов

Функции коллектора в генераторе постоянного тока

... постоянный ток. Генераторы постоянного тока являются источниками постоянного тока, в которых осуществляется преобразование механической энергии в электрическую. Якорь генератора приводится во вращение каким-либо двигателем, в качестве которого могут быть использованы электрические двигатели внутреннего сгорания и т.д. Генераторы постоянного тока находят применение в ...

Предположим, что приводной двигатель вращает якорь генератора против часовой стрелки, тогда в витке на якоре, вращающемся в магнитном поле постоянного магнита, наводится ЭДС, мгновенное значение которой

а направление для положения якоря, изображенного на рисунке, указано стрелками.

Рис. 1. Упрощенная модель коллекторной машины

В процессе работы генератора якорь вращается и виток a,b,c,d, занимает разное пространственное положение, поэтому в обмотке якоря наводится переменная ЭДС. Если бы в машине не было коллектора, то ток во внешней цепи (в нагрузке R ) был бы переменным, но посредством коллектора и щеток переменный ток обмотки якоря преобразуется в пульсирующий ток во внешней цепи генератора, т. е. ток, неизменный по направлению. При положении витка якоря, показанном на рис. 1, ток во внешней цепи (в нагрузке) направлен от щетки А к щетке В; следовательно, щетка А является положительной, а щетка В — отрицательной. После поворота якоря на 1800 (рис. 2, а ) направление тока в витке якоря изменится на обратное, однако полярность щеток, а следовательно, и направление не тока во внешней цепи (в нагрузке) останутся неизменными (рис. 2, б). Объясняется это тем, что в тот момент, когда ток в витке якоря меняет свое направление, происходит смена коллекторных пластин под щетками. Таким образом, под щеткой А всегда находится пластина, соединенная с проводником, расположенным под северным магнитным полюсом, а под щеткой В — пластина, соединенная с проводником, расположенным под южным полюсом. Благодаря этому полярность щеток генератора остается неизменной независимо от положения витка якоря. Что же касается пульсаций тока во внешней цепи, то они намного ослабится при увеличении числа витков в обмотке якоря при их равномерном распределении по поверхности якоря и соответствующем увеличении числа пластин в коллекторе.

Рис. 2. К принципу действия генератора постоянного тока

В соответствии с принципом обратимости электрических машин упрощенная модель машины постоянного тока может быть использована в качестве двигателя постоянного тока. Для этого необходимо отключить нагрузку генератора R и подвести к щеткам машины напряжение от источника постоянного тока. Например, если к щетке А подключить зажим «плюс», а к щетке В «минус», то в обмотке якоря появится ток , направление которого показано на рис. 3.

3 стр., 1494 слов

Обмотки якорей машин постоянного тока

Обмотка якоря машины постоянного тока представляет собой замкнутую систему проводников, определенным образом уложенных на сердечнике якоря и присоединенных к коллектору. Элементом обмотки якоря является секция, которая содержит ... что машина работает в режиме генератора и ее якорь вращается в направлении слева направо. Воспользо­вавшись правилом «правой руки», определяем направление э. д. с. (тока), ...

В результате взаимодействия этого тока с магнитным полем постоянного магнита (полем возбуждения) появятся электромагнитные силы , создающие на якоре электромагнитный момент М и вращающие его против часовой стрелки.

После поворота якоря на 180 0 электромагнитные силы не изменят своего направления, так как одновременно с переходом каждого проводника обмотки якоря из зоны одного магнитного полюса в зону другого полюса в этих проводниках меняется направление тока.

Рис. 3. К принципу действия двигателя постоянного тока

Таким образом, назначение коллектора и щеток в двигателе постоянного тока — изменять направление тока в проводниках обмотки якоря при их переходе из зоны магнитного полюса одной полярности в зону полюса другой полярности.

Рассмотренная упрощенная модель машины постоянного тока не обеспечивает двигателю устойчивой работы, так как при прохождении проводниками обмотки якоря геометрической нейтрали (рис. 3) электромагнитные силы = 0 (магнитная индукция в середине межполосного пространства равна нулю).

Однако с увеличением числа проводников в обмотке якоря (при равномерном их распределении на поверхности якоря) и числа пластин коллектора вращение якоря двигателя становится устойчивым и равномерным.

2. Устройство коллекторной машины постоянного тока

В настоящее время электромашиностроительные заводы изготовляют электрические машины постоянного тока, предназначенные для работы в самых различных отраслях промышленности, поэтому отдельные узлы этих машин могут иметь разную конструкцию, но общая конструктивная схема машин одинакова.

Неподвижная часть машины постоянного тока называется статором, вращающаяся часть — якорем (рис. 4).

Рис. 4. Устройство машины постоянного тока

Статор . Состоит из станины 6 и главных полюсов 4. Станина 6 служит для крепления полюсов и подшипниковых щитов и является частью магнитопровода, так как через нее замыкается магнитный поток машины. Станину изготовляют из стали — материала, обладающего достаточной механической прочностью и большой магнитной проницаемостью. В нижней части станины имеются лапы 11 для крепления машины к фундаментной плите, а по окружности станины расположены отверстия для крепления сердечников главных полюсов 4. Обычно станину делают цельной из стальной трубы, либо сварной из листовой стали, за исключением машин с весьма большим наружным диаметром, у которых станину делают разъемной, что облегчает транспортировку и монтаж машины.

Главные полюсы

В машинах постоянного тока небольшой мощности полюсные катушки делают бескаркасными — намоткой медного обмоточного провода непосредственно на сердечник полюса, предварительно наложив на него изоляционную прокладку (рис. 5, а ). В большинстве машин (мощностью 1 кВт и более) полюсную катушку делают каркасной: обмоточный провод наматывают на каркас (обычно пластмассовый), а затем надевают на сердечник полюса (рис. 5, б ). В некоторых конструкциях машин полюсную катушку для более интенсивного охлаждения разделяют по высоте на части, между которыми оставляют вентиляционные каналы.

23 стр., 11111 слов

Солнечные коллекторы. Солнечные батареи

... то эффективность солнечных коллекторов 70-85%. Основной принцип работы заключается в том, что солнечные коллекторы захватывают тепловую энергию, концентрируют и направляют для использования человеком. Page 2 2 1. Солнечный коллектор, Солнечный коллектор сбора тепловой ...

Якорь . Якорь машины постоянного тока (рис. 4) состоит из вала 10, сердечника 3 с обмоткой и коллектора 7 . Сердечник якоря имеет шихтованную конструкцию и набирается из штампованных пластин тонколистовой электротехнической стали. Листы покрывают изоляционным лаком, собирают в пакет и запекают. Готовый сердечник напрессовывают на вал якоря. Такая конструкция сердечника якоря позволяет значительно ослабить в нем вихревые токи, возникающие в результате его перемагничивания в процессе вращения в магнитном поле. На поверхности сердечника якоря имеются продольные пазы, в которые укладывают обмотку якоря.

Обмотку выполняют медным проводом круглого или прямоугольного сечения. Пазы якоря после заполнения их проводами обмотки обычно закрывают клиньями (текстолитовыми или гетинаксовыми).

В некоторых машинах пазы не закрывают клиньями, а накладывают на поверхность якоря бандаж. Бандаж делают из проволоки или стеклоленты с предварительным натягом. Лобовые части 9 обмотки якоря крепят к обмоткодержателям бандажом.

Рис. 5. Главные полюсы с бескаркасной (а) и каркасной (б) полюсными катушками: 1 — станина, 2 — сердечник полюса, 3 — полюсная катушка

Коллектор

электрический генератор статор ток

Рис. 6. Устройство коллектора с конусными шайбами

коллекторы на пластмассе,

Электрический контакт с коллектором осуществляется посредством щеток, располагаемых в щеткодержателях 4 (см. рис. 4).

Щеткодержатель (рис. 8) состоит из обоймы 4, в которую помещают щетку 3, курка 1, представляющего собой откидную деталь, передающую давление пружины 2 на щетку. Щеткодержатель крепят на пальце зажимом 5. Щетка снабжается гибким тросиком 6 для включения ее в электрическую цепь машины. Все щеткодержатели одной полярности соединены между собой сборными шинами, подключенными к выводам машины. Одно из основных условий бесперебойной работы машины — плотный и надежный контакт между щеткой и коллектором. Давление на щетку должно быть отрегулировано, так как чрезмерный нажим может вызвать преждевременный износ щетки и перегрев коллектора, а недостаточный нажим — искрение на коллекторе.

Рис. 7. Устройство коллектора на пластмассе

Рис. 8. Щеткодержатель (сдвоенный) машины постоянного тока

Помимо указанных частей машина постоянного тока имеет два подшипниковых щита: передний 12 (со стороны коллектора) и задний 7 (см. рис. 4).

В центральной части щита имеется расточка под подшипник. На переднем подшипниковом щите имеется смотровое окно (люк) с крышкой, через которое можно осмотреть коллектор и щетки, не разбирая машины. Концы обмоток выведены на зажимы коробки выводов. Вентилятор 8 служит для самовентиляции машины: воздух поступает в машину обычно со стороны коллектора, омывает нагретые части (коллектор, обмотки и сердечники) и выбрасывается с противоположной стороны через решетку.

Из рассмотрения принципа действия и устройства коллекторной машины постоянного тока следует, что непременным элементом этой машины, включенным между обмоткой якоря и внешней сетью, является щеточно-коллекторный узел — механический преобразователь рода тока. Таким образом, коллекторные машины сложнее бесколлекторных машин переменного тока (асинхронной и синхронной) и, следовательно, уступают им (особенно асинхронной машине) в надежности и имеют более высокую стоимость.

9 стр., 4454 слов

Электрический ток в неметаллах

... котором впервые появляется ток коллектора, можно найти энергию ... длиной 30-50 см, приложить постоянное напряжение в несколько ... образования интенсивной вторичной электронной эмиссии с катода, без ... положительный ион и электроны. Часть образовавшихся электронов может ... вольтметром . На коллектор ионов накладывается отрицательный потенциал, на 0,5 - ... темного пространства объясняется тем, что электроны начинают ...