Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории

Реферат

В последние годы в нашей стране в связи с развитием рыночной экономики существенно повысился интерес к постановке и решению задач теории инвестиций. Среди этих задач значительное место занимают задачи оптимизации портфелей активов.

Действительно, выбирая различные варианты распределения капитала между объектами, в которые инвестируется капитал, мы будем иметь различные результаты, если под результатом понимать величину дохода, полученного в течение заранее определенного периода. Очевидно, оптимальное распределение инвестируемого капитала должно обеспечивать в некотором смысле наилучший результат (приобрести недооцененные акции, чья рыночная цена на момент покупки ниже истинной, и избавиться от переоцененных бумаг и тем самым получить в перспективе максимальную прибыль).

В то же время, решение о структуре распределения капитала принимается часто в условиях неопределенности, когда доходность от вложения капитала в объекты инвестирования носит случайный характер. Тем самым появляется риск вложения капитала и задача оптимизации портфеля инвестиций должна ставиться и решаться в условиях наличия риска.

Целью данного реферата является составление оптимального портфеля ценных бумаг, используя различные модели .

Если портфель состоит более чем из 2 ценных бумаг, то для любого заданного уровня доходности существует бесконечное число портфелей, или, иными словами, можно сформулировать бесконечное количество портфелей, имеющих одну и ту же доходность.

Тогда задача инвестора сводится к следующему: из всего бесконечного набора портфелей с ожидаемой доходностью E(r n ) необходимо найти такой, который обеспечивал бы минимальный уровень риска. Иными словами, можно задачу инвестора свести к следующему: необходимо найти минимальное значение дисперсии портфеля

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 1 (1)

при заданных начальных условиях:

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 2 (2)

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 3 (3)

Для решения задачи нахождения оптимального портфеля, содержащего n ценных бумаг, необходимо первоначально вычислить:

а) n значений ожидаемой доходности E(r i ), где i = 1, 2,…, n каждой ценной бумаги в портфеле;

40 стр., 20000 слов

Формирование инвестиционного портфеля и анализ его доходности

... роста курса ценных бумаг. По-другому такой портфель называют курсовым портфелем. Основные вложения делаются преимущественно в акции. В зависимости от соотношения ожидаемого роста капитала и риска можно выделить среди портфелей роста еще и виды портфелей: Портфели дохода. ...

б) n значений дисперсий σ i 2 каждой ценной бумаги;

в) n (n-1)/2 значений ковариации σ i 2, j, где i, j = 1, 2,…, n.

Если подставить значения E(r i ), σi и σi,j в выражения (1 -3), то выясняется, что в этих уравнениях неизвестными оказываются только величины Wi — «веса» каждой ценной бумаги в портфеле. Следовательно, задача формирования оптимального портфеля из n ценных бумаг по сути дела сводится к следующему: для выбранной величины доходности Е* инвестор должен найти такие значения Wi , при которых риск инвестиционного портфеля становится минимальным. Иначе говоря, для выбранного значения Е* инвестор должен определить, какие суммы инвестиционных затрат необходимо направить на приобретение той или иной ценной бумаги, чтобы риск инвестиционного портфеля оказался минимальным.

В 1963 г. американский экономист У. Шарп предложил новый метод построения границы эффективных портфелей, позволяющий существенно сократить объемы необходимых вычислений. В дальнейшем этот метод модифицировался и в настоящее время известен как одноиндексная модель Шарпа.

В основе модели Шарпа лежит метод линейного регрессионного анализа, позволяющий связать две переменные величины — независимую Х и зависимую Y линейным выражением типа Y = α + β Х. В модели Шарпа независимой считается величина какого-то рыночного индекса. Таковыми могут быть, например, темпы роста валового внутреннего продукта, уровень инфляции, индекс цен потребительских товаров и т.п. Сам Шарп в качестве независимой переменной рассматривал норму отдачи r m , вычисленную на основе индекса Standart and Poor’s (S&P500).

В качестве зависимой переменной берется отдача ri какой-то i-ой ценной бумаги. Поскольку зачастую индекс S&P500 рассматривается как индекс, характеризующий рынок ценных бумаг в целом, то обычно

модель Шарпа называют рыночной моделью, а норму отдачи r m — рыночной нормой отдачи.

Пусть норма отдачи r m принимает случайные значения и в течение N шагов расчета наблюдались величины rm1 , r ,…, rmN . При этом доходность ri какой-то i-ой ценной бумаги имела значения ri1 , ri2 ,…, riN . В таком случае линейная регрессионная модель позволяет представить взаимосвязь между величинами rm и ri в любой наблюдаемый момент времени в виде:

r i,t = αi + βi rm,t + εi,t (4)

где: r i,t — доходность i-ой ценной бумаги в момент времени t;

β i — параметр линейной регрессии, называемый «бета», показывающий чувствительность доходности i-ой ценной бумаги к изменениям рыночной доходности;

r m,t — доходность рыночного портфеля в момент t;

22 стр., 10841 слов

Рынок ценных бумаг как элемент системы рыночных отношений

... Рынок ценных бумаг также является рынком для инвестиций, привлечения незадействованного капитала. Так как существуют различные виды рынков для инвестирования рынку ценных бумаг, приходится выдерживать жесткую конкуренцию, на которую влияет ряд факторов: уровень доходности рынка, ...

ε i,t — случайная ошибка, свидетельствующая о том, что реальные, действующие значения ri,t и rm,t порою отклоняются от линейной зависимости.

Особое значение необходимо уделить параметру β i , поскольку он определяет чувствительность доходности i-ой ценной бумаги к изменениям рыночной доходности. Ожидаемая доходность портфеля, состоящего из n ценных бумаг, вычисляется по формуле:

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 4 (5)

где W i — вес каждой ценной бумаги в портфеле

Дисперсия портфеля в модели Шарпа представляется в виде:

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 5 (6)

Цели инвестора сводятся к следующему:

необходимо найти минимальное значение дисперсии портфеля при следующих начальных условиях

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 6 (7)

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 7 (8)

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 8 (9)

Итак, отметим основные этапы, которые необходимо выполнить для построения границы эффективных портфелей в модели Шарпа:

Выбрать n ценных бумаг, из которых формируется портфель, и определить исторический промежуток в N шагов расчета, за который будут наблюдаться значения доходности r i,t каждой ценной бумаги.

По рыночному индексу вычислить рыночные доходности r m,t для того же промежутка времени.

Определить величину дисперсии рыночного показателя σ m , а также значения ковариаций σi,m доходностей каждой ценной бумаги с рыночной нормой отдачи и найти величины βi :

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 9 (10)

Найти ожидаемые доходности каждой ценной бумаги E(r i ) и рыночной доходности E(rm ) и вычислить параметр αi :

α i = E(ri ) — βi E(rm ) (11)

Подставить эти значения в соответствующие уравнения

После такой подстановки выяснится, что неизвестными величинами являются веса W i ценных бумаг. Выбрав определенную величину ожидаемой доходности портфеля E* , можно найти веса ценных бумаг в портфеле, построить границу эффективных портфелей и определить оптимальный портфель. [1]

Портфель Марковица минимального риска

Задача оптимизации портфеля активов с вектором средней доходности ковариационной матрицей может быть сформулирована следующим образом

20 стр., 9785 слов

Виды ценных бумаг и банковские операции с ними

... как залог при получении кредитов у центрального банка, а также служить объектом соглашений и продажи ценных бумаг с последующим выкупом. Они являются также средством диверсификации банковского портфеля ... но в ущерб доходности, банки помещают сравнительно небольшие суммы и в другие ценные бумаги: банковские акцепты, обращающиеся на рынке ценных бумаг, коммерческие бумаги, брокерские ссуды и ...

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 10

К этим условиям в задаче оптимизации портфеля активов следует добавить условие положительности портфеля (долей).

Однако, в общем случае финансовых инструментов предполагается возможность открытия коротких позиций (отрицательных долей инструментов в портфеле).

Тогда можно найти общее аналитическое решение задачи. Если обозначить,

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 11

то решение задачи имеет вид

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 12

Тогда зависимость дисперсии оптимизированного (эффективного) портфеля от требуемой доходности будет иметь вид

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 13

где Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 14 — минимально возможная дисперсия доходности портфеля и соответствующая ему средняя доходность

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 15 — доходность портфеля, с соотношением риск-доходность таким же как и портфель минимального риска (графически это единственная точка пересечения с параболой прямой, проходящей через начало координат и вершину параболы)

При наличии безрискового актива (с нулевой дисперсией доходности) с доходностью Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 16 формулировка задачи меняется

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 17

Решение этой задачи имеет вид

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 18

Вектор структуры рискового портфеля (доли рисковых активов не во всем портфеле, а в общей стоимости рискового портфеля) будет равен

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 19

Видно, что структура рисковой части портфеля не зависит от требуемой доходности. Требуемая доходность определяет лишь соотношение рискового портфеля и безрискового актива.

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 20

Стандартное отклонение оптимального (эффективного) портфеля зависит от требуемой доходности линейно, а именно следующим образом

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 21

Нетрудно также определить связь средней доходности отдельных инструментов от средней доходностью портфеля. Для этого определим вектор коэффициентов

4 стр., 1958 слов

Управление портфелем облигаций: принципы и модели

... вам известны? 2. Какой критерий следует использовать рациональному инвестору для выбора фонда, показавшую наилучшую доходность? Обоснуйте свой выбор расчётом соответствующего критерия. Решение 1) Инвестор, формируя свой портфель, оценивает лишь 2 показателя: ...

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 22

Отсюда получаем, что если инвесторы рациональны, то рыночный портфель условно можно считать эффективным, следовательно на рынке средняя доходность инструмента связана с доходностью рыночного портфеля следующим линейным образом

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 23

Это модель оценки финансовых активов — CAPM

В ходе выполнения работы использование Microsoft Excel позволило быстро произвести необходимые расчеты с помощью набора встроенных функций.

С помощью функции «ДИСП» была рассчитана дисперсия показателя доходности, функция «КОВАР» позволила рассчитать значения ковариаций доходностей каждой ценной бумаги с рыночной нормой отдачи.

Так же использовалась надстройка «Поиск решения», которая предназначена для решения определенных систем уравнений, линейных и нелинейных задач оптимизации. С ее помощью можно определить, при каких значениях указанных влияющих ячеек формула в целевой ячейке принимает нужное значение (минимальное, максимальное или равное какой-либо величине).

Для процедуры поиска решения можно задать ограничения, причем не обязательно, чтобы при этом использовались те же влияющие ячейки. Для расчета заданного значения применяются различные математические методы поиска. Кроме того, результаты работы программы могут быть оформлены в виде отчета.

В окне задания начальных условий можно указать целевую ячейку, ячейку в которой содержится целевая функция, указать направление оптимизации, изменяющиеся ячейки и ограничения [2].

Формирование оптимального портфеля ценных бумаг на основе моделей портфельной теории 24

портфель ценный бумага

Рассмотрены теоретические и прикладные аспекты экономико-математической модели Шарпа и Марковица в области оптимизации портфеля ценных бумаг. В ходе проведенного исследования были изучены основные положения функционирования рынка ценных бумаг, инвестиционной деятельности в области биржевых рынков.

Концепция Шарпа, как и модель Марковица позволяет оптимизировать структуру портфеля ценных бумаг, используя линейную регрессионную модель, что в свою очередь добавляет возможности анализировать колебания цен, прогнозировать их значения. Все поставленные задачи были успешно реализованы.

1. Аскинадзи В.М., Максимова В.Ф. Портфельные инвестиции / Московская финансово-промышленная академия. — М., — 2005. — с. 62 Орлова И.В.,

2. Поиск решений, Задачи оптимизации Excel. URL: . 24.05.2012.

3. МФД-ИнфоЦентр, Информационное агентство. URL: http://mfd.ru/.24.04.2012

4. RTS, биржа. URL:http://rts.micex.ru/s75.24.05.2012